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Abstract—A vision-based machine learner is presented that 
learns characteristic hand and object movement patterns for 
using certain objects, and uses this information to recreate the 
”imagined” object when the gesture is performed without the 
object. To classify the gestures/objects, Hidden Markov Models 
(HMMs) are trained on the moment-to-moment velocity and 
shape of the object-manipulating hand. Object identification 
using the Forward-Backward algorithm achieved 89% 
identification accuracy when deciding between 6 objects. Two 
methods for rotating and positioning imaginary objects in the 
frame were compared. One used a modified HMM to smooth 
the observed rotation of the hand, with mixtures of Von Mises 
distributions. The other used least squares regression to 
determine the object rotation as a function of hand location, 
and provided more accurate rotational positioning.  

I. INTRODUCTION 
It can be useful for a robot to be able not only to 

recognize real objects, but also recognize when a person’s 
gestures imply the existence of imaginary objects. Adults 
often use such gestures to illustrate ideas [1], while children 
often use them in pretend play [2]. Because these symbolic 
gestures are so common in communication and play, robots 
designed to communicate with humans should be able to 
recognize both the gestures that imply objects and the objects 
these gestures imply. 

An understanding of object-implying gestures would be 
advantageous in many areas. It would enhance human-robot 
interaction by helping robots to interpret natural gesture-
based communications. A robotic learner that could 
recognize pantomimed actions may be able to imitate such 
actions and interact with the suggested objects [3]. A visual 
representation of the object would make it easier for the 
learner to understand where someone was pretending an 
object to be. A robot that learned through observation could 
be taught a variety of actions in a short amount of time. 
These traits make such a learner easy to incorporate in a 
robotic toy that can engage in a child’s pretend play or a 
video game based on pantomimed actions. Additionally, a 
robotic learner that classifies objects not by their physical 

properties but by how they are used may have an advantage 
over other systems when learning object affordances [4]. 

A vision-based machine learner is presented that can use 
previously learned properties of objects and actions to reason 
about what object is implied by a gesture and where the 
imaginary object is. It learns characteristic hand and object 
movement patterns for using certain objects, then uses this 
information to recreate the “imagined” object when the 
gesture is performed without the object. This research is a 
new hybridization of gesture recognition using Hidden 
Markov Models (HMMs) (e.g., [5]), and augmented reality, 
which tracks imaginary objects but typically assumes rather 
than decides what object is being manipulated [6].  

This machine learner uses HMMs to learn several actions 
by observing gesture patterns in videos of the action 
performed with an object. HMMs are common tools for 
gesture recognition because they rely on probabilistic rather 
than deterministic reasoning and because of their ability to 
make predictions in real time [7]. It also learns how the 
object is positioned and rotated with respect to the hand. 
When shown video of one of the actions being performed 
without an object, the learner will choose which HMM most 
likely describes that action and fill in an image of the 
imagined object. The accuracy of the learner’s action 
classifications of recorded was tested. Two different 
approaches to rotating the imagined object image, one based 
on least squares regression and the other based on the von 
Mises distribution, were compared to determine which 
provided more accurate rotation. Correct positioning and 
rotation, which are part of the problem of registration in 
augmented reality systems [6], are necessary for realistic 
interaction with imagined objects.  

II. METHODS 
The machine learner must perform several sub-tasks to 

accomplish the overall goal of identifying pretend actions 
and filling in pretend objects. First, for each action, an HMM 
is trained from a video of a person performing that action 
with an appropriate object. The active hand must be isolated 
in each frame of the video so information about the discrete 



state of the hand can be used in an HMM. Once trained, the 
HMMs are used to identify an action from either a recorded 
video or from a real-time image stream. A binary image of 
the imagined object is placed in the recorded frames. 
Methods based on least squares regression and the von Mises 
distribution are compared to see which provides a more 
accurate orientation of the object. 

A.  Isolating the Active Hand 
In order to recognize the actions studied here, an image 

of the active hand (the hand in direct contact with the object) 
must be isolated so features about its shape and position can 
be extracted. RGB images taken from the camera are 
convolved with a sharpening filter. The sharpened images 
are converted to Y’UV color space to perform color 
segmentation based on skin color. Color spaces that account 
for both luminance and chrominance such as Y’UV have a 
high rate of accurate classification of skin color. In addition, 
Y’UV color space is robust to many shades of skin, both 
dark and light [8]. For this experiment, skin colors are found 
in the range Y’ < 0.8, -0.2 < U < 0, V > 0, which covers 
bright, mostly pink and red colors (Fig. 1). 

After the color thresholds create a binary image of the 
skin colored segments, the image is dilated and eroded to 
create contiguous segments. Of these skin segments, the 
active hand and the face tend to be the largest two segments. 
The face is assumed not to move in the video, so once it is 
found in the first frame, the skin segments in that region can 
be ignored in subsequent frames. Actions were performed 
with the active hand starting to the lower left of the face, 
though not always in the same position. Thus the two largest 
skin segments in the first frame were compared, and the 
segment higher and further right in the frame was determined 
to be the face. After the first frame, the facial skin segments 
are blacked out, leaving the hand the largest skin segment. 
Properties about the active hand were extracted from this 
largest segment. 

 

 

 

 

 

 

 

 

B. Defining the Actions 
HMMs use discrete states to probabilistically describe an 

action over time [9]. Here, the shape and motion of the hand 
determine the discrete states. Each state has three features – 
the hand shape (either open or closed), the hand’s vertical 
motion between frames, and the hand’s horizontal motion 
between frames. Motion is classified as either positive, 
negative, or still. These eighteen discrete states define the 
transition and emission matrices that make up the model for 
each action. The HMMs were trained using the Baum-Welch 
algorithm [9] to perform expectation-maximization [10]. One 
HMM was trained from each of the eighteen training videos. 

In order to decide which of six possible actions is 
occurring at a given time, the Forward-Backward algorithm 
determines which of the six models is most likely to describe 
the actions leading up to the current time. The likelihoods for 
all eighteen models were propagated forward. At each time 
step, the average likelihood for each action was computed 
from the likelihoods of the three models for that action. Like 
HMMs, the Forward-Backward algorithm can update in 
constant time [7], making it useful for real time applications. 

C. Placing an Object Image 
The final task for the pretending machine learner is to 

place an image of an object in each video frame. The image 
should be placed in the space where the performer is 
pretending there is an object, and it should be positioned and 
rotated realistically. To do this, the machine learner must 
learn how the object should be positioned and rotated with 
respect to the hand’s position and rotation. Positioning is 
learned by observing videos of an action performed with an 
object. Least squares regression finds a function mapping 
hand centroid position to the displacement of the object 
centroid from the hand centroid. 

 

Figure 1. Stages of the skin segmentation process for one video frame (1). Skin colored regions are detected with a filter (2). The face 
region is blocked out, leaving the hand as the largest skin colored region (3). 



Determining correct object rotation is not as simple as 
finding the rotation of the hand and rotating the object to the 
same degree. Hand rotation measurements based on the 
orientation of the hand’s major axis are often noisy, 
especially when different light highlights on the hand can 
obscure its true shape in a skin filter. In preliminary testing, 
hand angles were often interpreted as offset by 90 degrees 
from their true angle. A mixture of two von Mises 
distributions, a variant of the normal distribution for use in 
rotational coordinates [11], was fit to hand rotation data 
collected under known rotations to model these 
discrepancies. It was expected that the distribution would 
have two peaks when modeling actions with a consistent 
angle of rotation, one at the correct angle and another at the 
90 degree offset, because the rotation reading might 
occasionally jump 90 degrees when the segmented hand 
curled into a fist was close to square. For actions with 
varying rotation over time, the distribution was expected to 
have peaks at the most common angles and at their 90 degree 
offsets. A modified Kalman-like filter over time was used to 
smooth the hand rotation data and provide a more accurate 
estimate of actual rotation. The transitional model for this 
dynamic Bayesian model was trained on video of a hand 
rotating over time; a von Mises distribution for the rotational 
change from one moment to the next was fit to this data to 
obtain a transitional model that could smooth the frame-to-
frame readings of the hand rotation. The observation model, 
the aforementioned mixture of two Von Mises distributions, 
was then fit to recordings of the hand under known rotations. 
Functions for the von Mises distribution were obtained 
through a publicly available circular statistics toolbox [12]. 

When this smoothing over time was still not enough to 
provide consistent rotational readings (see experiment), a 
different approach was tried. For the set of actions studied 
here, it was hypothesized that object rotation could be 
inferred from the hand’s centroid position rather than from 
its angle of rotation, which changed slightly but consistently 
with each rotation. It was hypothesized that this change over 
time would be less susceptible to skin segmentation noise, 
because while finding the rotation of a major ellipses of a 
color blob can be highly susceptible to noise and 
inconsistencies at the edges, the centroid is an average of 
many pixels of data, which tends to wash out errors. Pretend 
motions that suggest an action or object are often stereotyped 
and repetitive [2], so object rotations are likely to follow a 
consistent pattern as the hand cycles through the stages of the 
motion. The rotation pattern can then be generalized by using 
least squares regression to find a mapping from hand 
centroid position to the angle of object rotation. 

III. EXPERIMENTS 

A. Training 
Using a Logitech Quickcam Orbit AF grabbing 640 X 

480 pixels at 30 fps, three people each recorded six twenty 

second videos, which were used to train the HMMs. 
Participants performed the following actions while holding 
an object appropriate to the action: drinking from a cup, 
petting a stuffed dog, swinging a hammer, writing with a 
marker, scooping with a shovel, and brushing teeth with a 
toothbrush. In each frame of the training videos, the active 
hand was isolated using the skin segmentation algorithms. 
An HMM was trained for each action based on the 
discretized videos. 

In addition to training the HMMs, the videos with objects 
were used to gather information about how each object 
should be positioned and rotated with respect to the hand. 
Least squares regression and the von Mises distribution 
provided two possible approaches to object rotation, the first 
based on hand position and the second based on hand 
rotation. 

B. Testing 
The three participants performed the same six actions for 

twenty seconds without the accompanying objects. The 
forward-backward algorithm was used to calculate the 
likelihood of each HMM model. The recorded videos were 
then used as the basis for creating two separate videos with 
the imaginary object filled in – one using the von Mises 
smoothing, and another using least squares regression, as 
described above. 

In order to judge the comparative accuracy of the least 
squares and von Mises rotation methods, the recorded 
objectless videos were filled in with the image of the correct 
object for that video. Two new sets of videos were made, one 
using each rotation method. An independent coder judged 
whether the least squares rotation or von Mises rotation 
looked more accurate given the hand’s orientation in a 
random sample of 40 frames from each of the eighteen 
videos. 

IV. RESULTS 

A. HMM Classification 
In the eighteen videos with imagined objects, the system 

chose the correct action sixteen times, yielding an 89% 
correct classification rate (Fig. 2). The two mistaken 
classifications both misclassified an action as scooping; the 
true actions were brushing and petting.  

B. Rotation Method Comparison 
An independent coder judged that the least squares 

method provided more accurate rotations than the von Mises 
method in 464 out of 720 random frames (Fig. 3). These 
results indicate that least squares provides statistically more 
accurate rotation (p = 0.001). However, least squares did not 
always provide more accurate rotations than the von Mises 
method. For the stuffed dog, von Mises was judged more  



TABLE I.  HMM CLASSIFICATION 

True Action 1 2 3 

Drinking drinking drinking drinking 

Petting scooping petting petting 

Hammering hammering hammering hammering 

Writing writing writing writing 

Scooping scooping scooping scooping 

Brushing brushing brushing brushing 

Figure 2.  Table of most likely HMM action classifications, for 
each action and participant, in videos where actions are performed without 

objects. 

accurate in 97.5% of frames. Von Mises was also judged 
more accurate in more frames for the marker, but this 
disparity is well within the realm of chance (p > 0.1). Least 
squares rotation was used to reproduce the videos from each 
participant with the imagined objects filled in. (Fig. 4) 

TABLE II.  ROTATION COMPARISON CLASSIFICATIONS 
 

Object Least Squares Von Mises 

Cup 119 1 

Dog 3 117 

Marker 57 63 

Hammer 83 37 

Shovel 97 23 

Toothbrush 105 15 

Method Total 464 256 

Figure 3.  Independent coder assessments of least squares and 
von Mises rotation accuracy. Numbers represent how many frames each 

method was judged to provide more accurate rotation based on the 
orientation of the hand in that frame. 

V. DISCUSSION 
The preceding experiment showed that HMM-based 

methods are feasible for identifying pretended objects from 
gestures.  The most difficult part of placing the object’s 
binary image in the frame was determining an accurate 
rotation, since the orientation of the hand was difficult to 
determine from the image.  Though it seemed reasonable to 
attempt to infer the object’s rotation from the major axis of 
an ellipsoid fitted to the skin-segmented hand and smooth 
this rotation over time, in practice, this ellipsoid was too 
noisy even with smoothing.  Our final solution made use of 
the repetitive nature of the actions, by fitting the rotation to a 
function of the object’s displacement.  This would not work 
for general motions, but does work for highly stereotyped, 
repetitive motions. 

Repetition and stereotyped movements are common to 
the symbolic gestures used in communications [1] and young 
children’s social pretend play. A learner that exploits these 
features may be at an advantage when implemented in a 
robot designed for interaction in contexts where these 
gestures occur frequently. In the case of pretend play, a shift 
from bottom-up, perceptually driven thinking to top-down, 
contextual expectation driven thinking may help explain why 
children require a placeholder object for pretense before they 
can pretend without any placeholder [13]. 

A toy or video game that recognized object-implying 
gestures could have pre-programmed information about what 
types of objects it would expect users to gesture with so that 
it can be used out of the box. In addition, it could also have a 
learning mode where users demonstrate the actions 
performed with a new object and use keywords to describe 
the contexts in which this action might occur. Depending on 
the type and number of new objects presented, the toy or 
game may learn entirely new sets of objects in different 
contexts and still interact with the user.  

The learner is currently being adapted to work in real-
time so that it can be implemented in communicative and 
entertainment robots. Robotic toys may be taught how to 
reach for and interact with imaginary objects so they may be 
more thoroughly incorporated in a child's pretense.  The 
probabilistic reasoning based on symbolic gestures presented 
here may inform systems for robotic imitation, a necessary 
skill for humanoid robots [14]. 
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Figure 4. Least squares regression and von Mises 
distribution approximations for imagined object rotation. 
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Figure 5. Imagined marker filled in using least squares regression. Analysis of object and hand positioning and rotation data from 
one participant generalized to allow accurate filling in for three participants. 


